

Customer: BullPerks
Date: June 22nd, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities are fixed - upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
BullPerks - Initial Audit

Approved by Andrew Matiukhin | CTO Hacken OU

Type Token \ Launchpad
Platform BSC / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Git
Repository

https://github.com/bullperks/bullperks-
smartcontracts/tree/abb583344750eb824680604b5d1f6779b3f910b3

Timeline 11 JUNE 2021 – 14 JUNE 2021
Changelog 14 JUNE 2021 – INITIAL AUDIT

22 JUNE 2021 – SECOND REVIEW

Table of contents

Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 7

Audit overview 8

Conclusion 11

Disclaimers 12

Introduction

Hacken OÜ (Consultant) was contracted by BullPerks (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of Customer's smart contract and its
code review conducted on June 14th, 2021.

Remediation check was conducted June 22nd, 2021.

Scope

The scope of the project is the smart contracts in git archive:

https://github.com/bullperks/bullperks-
smartcontracts/tree/abb583344750eb824680604b5d1f6779b3f910b3
Interfaces:
- IDealCreator.sol
- IDealLockups.sol
- IDealVesting.sol
- IERC20Metadata.sol
- ILocker.sol
- IVerifier.sol
- IVestingCreator.sol
Other:
- ERC20Decimal.sol
- Migrations.sol
- BLPDeal.sol
- BLPTokenVesting.sol
- Deal.sol
- DealBase.sol
- DealCollectWallet.sol
- DealCollectWalletCreator.sol
- DealCreator.sol
- DealLockups.sol
- DealVesting.sol
- ERC20Basic.sol
- Locker.sol
- Pausable.sol
- TGETokenVesting.sol
- Verifier.sol
- VestingCreator.sol
We have scanned these smart contracts for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency
Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Asset’s integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contract is well-secured.

Our team performed a manual audit and automated checks with Mythril and
Slither. All issues found during automated analysis were manually reviewed,
and important vulnerabilities are presented in the Audit overview section.
All found issues can be found in the Audit overview section.

Security engineers found 2 informational issues during the first review.

After second review code do not consist any issues.

Graph 1. The distribution of vulnerabilities after the first review.

Insecure Poor secured Secured Well-secured

You are here

Severity Definitions

Risk Level Description
Critical Critical vulnerabilities are usually straightforward to

exploit and can lead to assets loss or data
manipulations.

High High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best
Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

Audit overview

 Critical

No Critical severity issues were found.

 High

No High severity issues were found.

 Medium

No High severity issues were found.

 Low

No Low severity issues were found.

 Lowest / Code style / Best Practice

1. Vulnerability: Public function that could be declared external

public functions that are never called by the contract should be
declared external to save gas.

Lines: BLPDeal.sol#222-223

function getVesting(address _beneficiary) public view

 returns (uint256, uint256) {

Lines: DealBase.sol#161-163

function getTiersLength() public view

 returns (uint256)

{

Lines: DealLockups.sol#66-68

function getTiersLength() public view

 returns (uint256)

{

Lines: Locker.sol#145-149

function getDeposit(address _user, uint256 _id)

 public

 view

 returns (uint256, uint256)

{

Lines: TGETokenVesting.sol#64

function getVesting(address _beneficiary) public view returns (uint256,

uint256, uint256, uint256) {

22062021 Fixed before second review

2. Lines:

- 315 of the BLPDeal.sol
- 174 of the Deal.sol
- 169, 174, 198 and 208 of the DealBase.sol
- 58 of the DealCollectWallet.sol
- 108 of the DealCreator.sol
- 137 of the DealVesting.sol
- 22, 33 and 46 of the Verifier.sol
are above the recommended maximum line length.

https://docs.soliditylang.org/en/v0.6.12/style-guide.html#maximum-line-length

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools.

Audit report contains all found security vulnerabilities and other issues in
the reviewed code.

Security engineers found 2 informational issues during the first review.

After second review code do not consist any issues.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with
the best industry practices at the date of this report, in relation to
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and
safety of the code, bugfree status or any other statements of the contract.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report only
- we recommend proceeding with several independent audits and a public bug
bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee the explicit security of the audited smart contracts.

